328554(28)

B. E. (Fifth Semester) Examination, April-May 2021

(New Scheme)

(Et & T Branch)

DIGITAL COMMUNICATION

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) is compulsory from each question & carries 2 marks.

Attempt any two parts of part (b), (c) and (d) of each question & carrying 7 marks.

of Immis 21/19 outried Whit-I

1. (a) An audio signal, $s(t) = 3\cos(2\pi 500t)$ is quantized using 10 bit PCM. Determine signal to quantization noise ratio?

- (b) State and proof low pass sampling theorem.
- (c) Explain the process of digital multiplexing using T1, T2, T3 and T4 lines.
- (d) A signal $x_1(t)$ is bandlimited to 3 kHz. There are three more signals $x_2(t)$, $x_3(t)$ and $x_4(t)$ which are bandlimited to 1 kHz each. This signals are to be transmitted by a TDM system.
 - (i) Design a TDM scheme where each signal is sampled at its Nyquist rate.
 - (ii) What must be the speed of the commutator?
 - (iii) Calculate the minimum transmission bandwidth of the channel.

Unit-II

- 2. (a) What is Quantization?
 - (b) A PCM system uses a uniform quantizer followed by a ν bit encoder. Show that the RMS signal to quantization noise ratio is approximately given as $(1.8 + 6 \nu)$ dB.
 - (c) Explain the working principal of Delta modulator

- with the help of suitable block diagram.
- (d) Derive an expression for signal to noise ratio in Delta modulator.

Unit-III

- **3.** (a) State the condition for Nyquist criterion for zero ISI.
 - (b) Derive an expression for PSD of Unipolar signal.
 - (c) Derive an expression for detection error probability of polar signal.
 - (d) Assuming the initial content of all the shift registers of the scrambler of fig. to be zero, find the output sequence Y for an input sequence X given by X = 1010101111111.

[4]

Unit-IV and a glade of the

- 4. (a) List the various factor affecting the choice of line code.
 - (b) The bit stream 0010010011 is to be transmitted using DPSK. Determine encoded sequence and detected binary sequene.
 - (c) Explain the generation and detection of BPSK.
 - (d) Explain generation and detection of QPSK.

Unit-V

- 5. (a) Compare Gaussian noise and white noise.
 - (b) Derive an expression for probability of error of Match filter receiver.
 - (c) Derive an expression for error probability of BPSK.
 - (d) Derive an expression for transfer function of optimum filter.